3.338 \(\int \frac{x^8}{1+x^4+x^8} \, dx\)

Optimal. Leaf size=141 \[ \frac{1}{8} \log \left (x^2-x+1\right )-\frac{1}{8} \log \left (x^2+x+1\right )+\frac{\log \left (x^2-\sqrt{3} x+1\right )}{8 \sqrt{3}}-\frac{\log \left (x^2+\sqrt{3} x+1\right )}{8 \sqrt{3}}+x+\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{4 \sqrt{3}}+\frac{1}{4} \tan ^{-1}\left (\sqrt{3}-2 x\right )-\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{4 \sqrt{3}}-\frac{1}{4} \tan ^{-1}\left (2 x+\sqrt{3}\right ) \]

[Out]

x + ArcTan[(1 - 2*x)/Sqrt[3]]/(4*Sqrt[3]) + ArcTan[Sqrt[3] - 2*x]/4 - ArcTan[(1 + 2*x)/Sqrt[3]]/(4*Sqrt[3]) -
ArcTan[Sqrt[3] + 2*x]/4 + Log[1 - x + x^2]/8 - Log[1 + x + x^2]/8 + Log[1 - Sqrt[3]*x + x^2]/(8*Sqrt[3]) - Log
[1 + Sqrt[3]*x + x^2]/(8*Sqrt[3])

________________________________________________________________________________________

Rubi [A]  time = 0.0973638, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 20, number of rules used = 7, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.5, Rules used = {1367, 1419, 1094, 634, 618, 204, 628} \[ \frac{1}{8} \log \left (x^2-x+1\right )-\frac{1}{8} \log \left (x^2+x+1\right )+\frac{\log \left (x^2-\sqrt{3} x+1\right )}{8 \sqrt{3}}-\frac{\log \left (x^2+\sqrt{3} x+1\right )}{8 \sqrt{3}}+x+\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{4 \sqrt{3}}+\frac{1}{4} \tan ^{-1}\left (\sqrt{3}-2 x\right )-\frac{\tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )}{4 \sqrt{3}}-\frac{1}{4} \tan ^{-1}\left (2 x+\sqrt{3}\right ) \]

Antiderivative was successfully verified.

[In]

Int[x^8/(1 + x^4 + x^8),x]

[Out]

x + ArcTan[(1 - 2*x)/Sqrt[3]]/(4*Sqrt[3]) + ArcTan[Sqrt[3] - 2*x]/4 - ArcTan[(1 + 2*x)/Sqrt[3]]/(4*Sqrt[3]) -
ArcTan[Sqrt[3] + 2*x]/4 + Log[1 - x + x^2]/8 - Log[1 + x + x^2]/8 + Log[1 - Sqrt[3]*x + x^2]/(8*Sqrt[3]) - Log
[1 + Sqrt[3]*x + x^2]/(8*Sqrt[3])

Rule 1367

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d^(2*n - 1)*(d*x)
^(m - 2*n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(c*(m + 2*n*p + 1)), x] - Dist[d^(2*n)/(c*(m + 2*n*p + 1)), In
t[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; Fr
eeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*n
*p + 1, 0] && IntegerQ[p]

Rule 1419

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[(2*d)/e -
b/c, 2]}, Dist[e/(2*c), Int[1/Simp[d/e + q*x^(n/2) + x^n, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x^(n/2
) + x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2,
 0] && IGtQ[n/2, 0] && (GtQ[(2*d)/e - b/c, 0] || ( !LtQ[(2*d)/e - b/c, 0] && EqQ[d, e*Rt[a/c, 2]]))

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^8}{1+x^4+x^8} \, dx &=x-\int \frac{1+x^4}{1+x^4+x^8} \, dx\\ &=x-\frac{1}{2} \int \frac{1}{1-x^2+x^4} \, dx-\frac{1}{2} \int \frac{1}{1+x^2+x^4} \, dx\\ &=x-\frac{1}{4} \int \frac{1-x}{1-x+x^2} \, dx-\frac{1}{4} \int \frac{1+x}{1+x+x^2} \, dx-\frac{\int \frac{\sqrt{3}-x}{1-\sqrt{3} x+x^2} \, dx}{4 \sqrt{3}}-\frac{\int \frac{\sqrt{3}+x}{1+\sqrt{3} x+x^2} \, dx}{4 \sqrt{3}}\\ &=x-\frac{1}{8} \int \frac{1}{1-x+x^2} \, dx+\frac{1}{8} \int \frac{-1+2 x}{1-x+x^2} \, dx-\frac{1}{8} \int \frac{1}{1+x+x^2} \, dx-\frac{1}{8} \int \frac{1+2 x}{1+x+x^2} \, dx-\frac{1}{8} \int \frac{1}{1-\sqrt{3} x+x^2} \, dx-\frac{1}{8} \int \frac{1}{1+\sqrt{3} x+x^2} \, dx+\frac{\int \frac{-\sqrt{3}+2 x}{1-\sqrt{3} x+x^2} \, dx}{8 \sqrt{3}}-\frac{\int \frac{\sqrt{3}+2 x}{1+\sqrt{3} x+x^2} \, dx}{8 \sqrt{3}}\\ &=x+\frac{1}{8} \log \left (1-x+x^2\right )-\frac{1}{8} \log \left (1+x+x^2\right )+\frac{\log \left (1-\sqrt{3} x+x^2\right )}{8 \sqrt{3}}-\frac{\log \left (1+\sqrt{3} x+x^2\right )}{8 \sqrt{3}}+\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x\right )+\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+2 x\right )+\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,-\sqrt{3}+2 x\right )+\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,\sqrt{3}+2 x\right )\\ &=x+\frac{\tan ^{-1}\left (\frac{1-2 x}{\sqrt{3}}\right )}{4 \sqrt{3}}+\frac{1}{4} \tan ^{-1}\left (\sqrt{3}-2 x\right )-\frac{\tan ^{-1}\left (\frac{1+2 x}{\sqrt{3}}\right )}{4 \sqrt{3}}-\frac{1}{4} \tan ^{-1}\left (\sqrt{3}+2 x\right )+\frac{1}{8} \log \left (1-x+x^2\right )-\frac{1}{8} \log \left (1+x+x^2\right )+\frac{\log \left (1-\sqrt{3} x+x^2\right )}{8 \sqrt{3}}-\frac{\log \left (1+\sqrt{3} x+x^2\right )}{8 \sqrt{3}}\\ \end{align*}

Mathematica [C]  time = 0.281502, size = 139, normalized size = 0.99 \[ \frac{1}{24} \left (3 \log \left (x^2-x+1\right )-3 \log \left (x^2+x+1\right )+24 x-2 \sqrt{3} \tan ^{-1}\left (\frac{2 x-1}{\sqrt{3}}\right )-2 \sqrt{3} \tan ^{-1}\left (\frac{2 x+1}{\sqrt{3}}\right )\right )-\frac{i \tan ^{-1}\left (\frac{1}{2} \left (1-i \sqrt{3}\right ) x\right )}{\sqrt{-6+6 i \sqrt{3}}}+\frac{i \tan ^{-1}\left (\frac{1}{2} \left (1+i \sqrt{3}\right ) x\right )}{\sqrt{-6-6 i \sqrt{3}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^8/(1 + x^4 + x^8),x]

[Out]

((-I)*ArcTan[((1 - I*Sqrt[3])*x)/2])/Sqrt[-6 + (6*I)*Sqrt[3]] + (I*ArcTan[((1 + I*Sqrt[3])*x)/2])/Sqrt[-6 - (6
*I)*Sqrt[3]] + (24*x - 2*Sqrt[3]*ArcTan[(-1 + 2*x)/Sqrt[3]] - 2*Sqrt[3]*ArcTan[(1 + 2*x)/Sqrt[3]] + 3*Log[1 -
x + x^2] - 3*Log[1 + x + x^2])/24

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 110, normalized size = 0.8 \begin{align*} x-{\frac{\ln \left ({x}^{2}+x+1 \right ) }{8}}-{\frac{\sqrt{3}}{12}\arctan \left ({\frac{ \left ( 1+2\,x \right ) \sqrt{3}}{3}} \right ) }+{\frac{\ln \left ({x}^{2}-x+1 \right ) }{8}}-{\frac{\sqrt{3}}{12}\arctan \left ({\frac{ \left ( 2\,x-1 \right ) \sqrt{3}}{3}} \right ) }-{\frac{\ln \left ( 1+{x}^{2}+x\sqrt{3} \right ) \sqrt{3}}{24}}-{\frac{\arctan \left ( 2\,x+\sqrt{3} \right ) }{4}}+{\frac{\ln \left ( 1+{x}^{2}-x\sqrt{3} \right ) \sqrt{3}}{24}}-{\frac{\arctan \left ( 2\,x-\sqrt{3} \right ) }{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^8/(x^8+x^4+1),x)

[Out]

x-1/8*ln(x^2+x+1)-1/12*arctan(1/3*(1+2*x)*3^(1/2))*3^(1/2)+1/8*ln(x^2-x+1)-1/12*3^(1/2)*arctan(1/3*(2*x-1)*3^(
1/2))-1/24*ln(1+x^2+x*3^(1/2))*3^(1/2)-1/4*arctan(2*x+3^(1/2))+1/24*ln(1+x^2-x*3^(1/2))*3^(1/2)-1/4*arctan(2*x
-3^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{1}{12} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) - \frac{1}{12} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + x - \frac{1}{2} \, \int \frac{1}{x^{4} - x^{2} + 1}\,{d x} - \frac{1}{8} \, \log \left (x^{2} + x + 1\right ) + \frac{1}{8} \, \log \left (x^{2} - x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^8+x^4+1),x, algorithm="maxima")

[Out]

-1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + x - 1/2*integrate(1
/(x^4 - x^2 + 1), x) - 1/8*log(x^2 + x + 1) + 1/8*log(x^2 - x + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.60605, size = 720, normalized size = 5.11 \begin{align*} \frac{1}{12} \, \sqrt{6} \sqrt{3} \sqrt{2} \arctan \left (-\frac{1}{3} \, \sqrt{6} \sqrt{3} \sqrt{2} x + \frac{1}{3} \, \sqrt{6} \sqrt{3} \sqrt{\sqrt{6} \sqrt{2} x + 2 \, x^{2} + 2} - \sqrt{3}\right ) + \frac{1}{12} \, \sqrt{6} \sqrt{3} \sqrt{2} \arctan \left (-\frac{1}{3} \, \sqrt{6} \sqrt{3} \sqrt{2} x + \frac{1}{3} \, \sqrt{6} \sqrt{3} \sqrt{-\sqrt{6} \sqrt{2} x + 2 \, x^{2} + 2} + \sqrt{3}\right ) - \frac{1}{48} \, \sqrt{6} \sqrt{2} \log \left (\sqrt{6} \sqrt{2} x + 2 \, x^{2} + 2\right ) + \frac{1}{48} \, \sqrt{6} \sqrt{2} \log \left (-\sqrt{6} \sqrt{2} x + 2 \, x^{2} + 2\right ) - \frac{1}{12} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x + 1\right )}\right ) - \frac{1}{12} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x - 1\right )}\right ) + x - \frac{1}{8} \, \log \left (x^{2} + x + 1\right ) + \frac{1}{8} \, \log \left (x^{2} - x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^8+x^4+1),x, algorithm="fricas")

[Out]

1/12*sqrt(6)*sqrt(3)*sqrt(2)*arctan(-1/3*sqrt(6)*sqrt(3)*sqrt(2)*x + 1/3*sqrt(6)*sqrt(3)*sqrt(sqrt(6)*sqrt(2)*
x + 2*x^2 + 2) - sqrt(3)) + 1/12*sqrt(6)*sqrt(3)*sqrt(2)*arctan(-1/3*sqrt(6)*sqrt(3)*sqrt(2)*x + 1/3*sqrt(6)*s
qrt(3)*sqrt(-sqrt(6)*sqrt(2)*x + 2*x^2 + 2) + sqrt(3)) - 1/48*sqrt(6)*sqrt(2)*log(sqrt(6)*sqrt(2)*x + 2*x^2 +
2) + 1/48*sqrt(6)*sqrt(2)*log(-sqrt(6)*sqrt(2)*x + 2*x^2 + 2) - 1/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x + 1)) - 1
/12*sqrt(3)*arctan(1/3*sqrt(3)*(2*x - 1)) + x - 1/8*log(x^2 + x + 1) + 1/8*log(x^2 - x + 1)

________________________________________________________________________________________

Sympy [C]  time = 0.692784, size = 192, normalized size = 1.36 \begin{align*} x + \left (\frac{1}{8} + \frac{\sqrt{3} i}{24}\right ) \log{\left (x - 1 - \frac{\sqrt{3} i}{3} - 9216 \left (\frac{1}{8} + \frac{\sqrt{3} i}{24}\right )^{5} \right )} + \left (\frac{1}{8} - \frac{\sqrt{3} i}{24}\right ) \log{\left (x - 1 - 9216 \left (\frac{1}{8} - \frac{\sqrt{3} i}{24}\right )^{5} + \frac{\sqrt{3} i}{3} \right )} + \left (- \frac{1}{8} + \frac{\sqrt{3} i}{24}\right ) \log{\left (x + 1 - \frac{\sqrt{3} i}{3} - 9216 \left (- \frac{1}{8} + \frac{\sqrt{3} i}{24}\right )^{5} \right )} + \left (- \frac{1}{8} - \frac{\sqrt{3} i}{24}\right ) \log{\left (x + 1 - 9216 \left (- \frac{1}{8} - \frac{\sqrt{3} i}{24}\right )^{5} + \frac{\sqrt{3} i}{3} \right )} + \operatorname{RootSum}{\left (2304 t^{4} + 48 t^{2} + 1, \left ( t \mapsto t \log{\left (- 9216 t^{5} - 8 t + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**8/(x**8+x**4+1),x)

[Out]

x + (1/8 + sqrt(3)*I/24)*log(x - 1 - sqrt(3)*I/3 - 9216*(1/8 + sqrt(3)*I/24)**5) + (1/8 - sqrt(3)*I/24)*log(x
- 1 - 9216*(1/8 - sqrt(3)*I/24)**5 + sqrt(3)*I/3) + (-1/8 + sqrt(3)*I/24)*log(x + 1 - sqrt(3)*I/3 - 9216*(-1/8
 + sqrt(3)*I/24)**5) + (-1/8 - sqrt(3)*I/24)*log(x + 1 - 9216*(-1/8 - sqrt(3)*I/24)**5 + sqrt(3)*I/3) + RootSu
m(2304*_t**4 + 48*_t**2 + 1, Lambda(_t, _t*log(-9216*_t**5 - 8*_t + x)))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{8}}{x^{8} + x^{4} + 1}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^8/(x^8+x^4+1),x, algorithm="giac")

[Out]

integrate(x^8/(x^8 + x^4 + 1), x)